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Abstract A lagged ensemble is an ensemble of forecasts from the same model initialized at different
times but verifying at the same time. The skill of a lagged ensemble mean can be improved by assigning
weights to different forecasts in such a way as to maximize skill. If the forecasts are bias corrected, then an
unbiased weighted lagged ensemble requires the weights to sum to one. Such a scheme is called a
weighted-average lagged ensemble. In the limit of uncorrelated errors, the optimal weights are positive and
decay monotonically with lead time, so that the least skillful forecasts have the least weight. In more realistic
applications, the optimal weights do not always behave this way. This paper presents a series of analytic
examples designed to illuminate conditions under which the weights of an optimal weighted-average
lagged ensemble become negative or depend nonmonotonically on lead time. It is shown that negative
weights are most likely to occur when the errors grow rapidly and are highly correlated across lead time.
The weights are most likely to behave nonmonotonically when the mean square error is approximately con-
stant over the range forecasts included in the lagged ensemble. An extreme example of the latter behavior
is presented in which the optimal weights vanish everywhere except at the shortest and longest lead times.

1. Introduction

The problem of combining forecasts into a superior forecast is of considerable interest at the present time.
Many studies focus on combining forecasts from different models, yielding so-called multimodel ensembles. In
this paper, we consider combining forecasts from the same model initialized at different times but verifying at
the same time. Such an ensemble is called a lagged ensemble (Hoffman & Kalnay, 1983). A lagged ensemble is
very attractive in operational forecasting because the members are generated routinely and therefore provide
an ensemble prediction system with low peak computational cost. Whether a lagged ensemble improves fore-
cast skill is not always clear, since some studies find positive impacts (Ben Bouallegue et al., 2013; Chen et al.,
2013; Dalcher et al., 1988; Lu et al., 2007; Yuan et al., 2009) while others find negligible or negative impacts
(Buizza, 2008). Nevertheless, because numerous studies do find benefits, and the computational savings associ-
ated with a lagged ensemble can be immense, further study of the lagged ensemble method is warranted.

An important aspect of a lagged ensemble is that different members have different skills because of the dif-
ferent lead times. Recent studies have attempted to improve the lagged ensemble by developing a
weighted lagged ensemble, whereby different members are assigned different weights in such a way as to
maximize skill. Whether unequal weights lead to significantly better forecasts than equal weighting is not
always clear, especially in the context of multimodel combinations (DelSole et al., 2012). Also, these weights
may vary in time (Raynaud et al., 2015) or be fixed (Lu et al., 2007), although Raynaud et al. (2015) found no
noticeable gain due to allowing time-variations in the weights. Here we consider only weights that are fixed
in time. A natural first guess, which is optimal when the errors are uncorrelated, is to assign a weight that is
inversely proportional to the mean square error of each forecast. Such weights are positive and decay
monotonically with lead time. In particular, the longest-lead forecast has the smallest weight, since it has
the smallest skill, at least on average. However, this behavior is not always observed in practice. Lu et al.
(2007) found that weights from multiple regression of hourly forecasts did not decay monotonically with
lead time. Indeed, in some cases, the weight assigned to the largest-lead forecast was larger than
the weights at shorter lead times. Trenary et al. (2017) found similar behavior in a weighted-average
lagged ensemble for the Madden-Julian Oscillation. Of course, since the weights are derived from statistical
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methods, such results might be explained by random sampling error. Here we show that such behavior can
occur even in the absence of sampling error and under a broad range of statistical models for the errors. In
particular, we present a series of analytic examples designed to illuminate conditions under which the
weights of an optimal lagged ensemble become negative or depend nonmonotonically with lead time.
Indeed, we present a remarkable analytic example in which the weights of an optimal lagged ensemble
vanish everywhere except those at the shortest and longest leads.

2. The Weighted Lagged Ensemble

The problem of combining forecasts has a long history stretching back at least to Bates and Granger (1969;
see Clemen, 1989, for later references). The starting point of these methods is a set of forecasts. Let f ðt; sÞ
denote a forecast of lead s and verifying at time t; thus the initialization time is t2s. A weighted lagged
ensemble is defined as

�f ðt; s; LÞ5
XL

l51

wl f ðt; s1l21Þ; (1)

where wl are the weights and L is the number of forecasts being combined. The unit of time is chosen to
coincide with the interval between initialization times, which is assumed to be uniform (as is common in
operational forecasting). Although there exist methods for deriving time-dependent weights (e.g., Raynaud
et al., 2015), we seek weights that are time independent.

Let the observation at the verification time be denoted ot. We assume the forecasts are biased corrected,
which means E½f ðt; sÞ2ot�50, where E½�� is an expectation operator. This assumption is equivalent to

E½f ðt; sÞ�5E½ot� for all t and s: (2)

It is desirable for the weighted lagged ensemble also to be unbiased. This condition requires

E �f ðt; s; LÞ
� �

5
XL

l51

wl E½f ðt; s1l21Þ�5
XL

l51

wlE½ot�5E½ot�: (3)

The last equality implies that the weights must sum to one:

XL

l51

wl51: (4)

Thus, if the forecasts are unbiased, then a weighted combination is unbiased if and only if the weights sum
to one. We call a linear combination in which the weights sum to one a weighted average. We seek a
weighted-average lagged ensemble that minimizes the mean square error. The error of the weighted-
average lagged ensemble can be written as

��ðt; s; LÞ5�f ðt; s; LÞ2ot5
XL

l51

wl�ðt; s1l21Þ; (5)

where �ðt; sÞ5f ðt; sÞ2ot is the error of forecast f ðt; sÞ. The mean square error is

MSEðs; LÞ5E
XL

l51

wl�ðt; s1l21Þ
 !2" #

5
XL

l51

XL

l051

wl wl0Rs1l21;s1l021; (6)

where we define the cross-lead error covariance matrix:

Rs1;s2 5E �ðt; s1Þ�ðt; s2Þ½ �: (7)

In deriving this expression, errors are assumed to be stationary and hence error covariances are indepen-
dent of time t. The mean square error can be written in concise matrix form as

MSEðs; LÞ5wT Rw; (8)

where w is the vector formed by the weights w1; . . . ;wL, superscript T denotes the transpose operation,
and R is the covariance matrix obtained from the appropriate elements in the sum in (6). To minimize the
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mean square error subject to the constraint (4), we apply the method of Lagrange multipliers using the
objective function:

h5MSEðs; LÞ22kjT w; (9)

where j is an L-dimensional vector consisting of ones. Differentiating with respect to w gives

@h
@w

52Rw22kj: (10)

Setting this to zero and simplifying gives

Rw5kj: (11)

Inverting the covariance matrix, and choosing the multiplier k to satisfy the constraint (4), gives the optimal
weights:

wopt5
R21j

jT R21j
: (12)

If the errors are uncorrelated, then the error covariance matrix is diagonal and the weights can be solved
explicitly in terms of the mean square error as

ws /
1

MSEðs; 1Þ : (13)

In this case, the weights are positive and decay monotonically with lead time (provided MSE decays with
lead time, as it usually does).

3. Simple Examples

To gain insight into how the optimal weights depend on the correlation between errors, consider the
generic problem of choosing the value of w that minimizes the mean square of

z5wx1y; (14)

where x and y are random variables with zero mean and unit variance. The mean square of z is

E½z2�5w21112qXY w; (15)

where qXY is the correlation between x and y. The minimum mean square is found by setting the derivative
of (15) to zero and solving, which yields w52qXY . Thus, the sign of the optimal value of w is opposite to
that of the correlation between x and y. This solution should make sense: regressing x out of y leaves the
residual y2qXY x, which no longer is correlated with x. The minimum mean square obtained with w52qXY

is

E½z2�min 512q2
XY : (16)

Thus, the greater the correlation qXY, the smaller the mean square of the combination. This too should
make sense—in the extreme case of a perfect correlation qXY 51, choosing w 5 21 results in the difference
y – x, which vanishes because x and y are perfectly correlated.

Now consider a weighted average of two random variables:

z5w�11ð12wÞ�25wð�12�2Þ1�2: (17)

Note that the far right-hand side of this equation is of the form (14), but the random variables are combined
differently because of the constraint that the weights sum to one. Assuming �1 and �2 have zero mean and
respective variances r2

1 and r2
2, the mean square of z is

E½z2�5w2ðr2
11r2

222r1r2q12Þ1r2
212wðr1r2q122r2

2Þ; (18)

where q12 is the correlation between �1 and �2. The minimum mean square occurs at
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wopt5
r2

22r1r2q12

r2
11r2

222r1r2q12
: (19)

This solution also could have been obtained from (12) using the covariance matrix for ð�1; �2Þ:

R5
r2

1 q12r1r2

q12r1r2 r2
2

 !
) R21 /

r2
2 2q12r1r2

2q12r1r2 r2
1

 !
: (20)

Importantly, at least one weight is negative if wopt < 0 or wopt > 1, which translates to

r2

r1
< q12 or

r1

r2
< q12: (21)

This condition effectively states that the weights can become negative if the correlation q12 is sufficiently
large and the difference in variance is sufficiently large. Conversely, the weights are always positive if the
variances are equal (i.e., r15r2) or the errors are uncorrelated (i.e., q1250). The negative weights arise
because the sign of wopt must be opposite to that of the covariance between �12�2 and �2 in (17), but the
latter covariance becomes positive when r1q12 > r2. Similarly, we could have arbitrarily attached the
weight w to �2 instead of �1 in (17), in which case the sign of wopt must be opposite to that of the covariance
between �22�1 and �1, which becomes positive when r2q12 > r1. This example reflects a theme that
emerges in the next section, namely that the weights are most likely to become negative when the errors
change rapidly with lead time and are highly correlated with each other.

Suppose now that the variances are equal (i.e., r15r2). Then, the minimum mean square of z (18) occurs at
wopt51=2, regardless of the value of q12. This solution, in particular its independence from q12, differs dra-
matically from the solution obtained by minimizing (15). Furthermore, the minimum mean square obtained
from wopt51=2 is

E½z2�min 5
11q12

2
: (22)

This result also differs qualitatively from (16): the minimum mean square (16) decreases with correlation qXY,
whereas the minimum mean square (22) increases with correlation q12. Thus, if the combination is of the
form (14), then the mean square is minimized by choosing the two most dependent variables (i.e., variables
with the highest correlation), whereas if the combination is a weighted average of the form (17), then the
mean square is minimized by choosing the two least dependent variables (i.e., variables with smallest corre-
lation). In essence, when the weights sum to one, the mean square is reduced when errors cancel, and this
cancellation is most likely when the errors are least dependent.

4. More Complex Examples

In this section, we consider a weighted average of three or more random variables. A natural approach to
exploring the relation between a weighted average and the error covariance function of the variables is to
construct a mathematical model of a stochastic process and then compute the cross-lead error covariance
function of the associated forecasts. This can be done analytically for a first order autoregressive process
(AR1). We show in the appendix that the resulting weights are positive and decrease monotonically with
lag. This result is consistent with the empirical results of Trenary et al. (2017).

The above result implies that to obtain weights that are negative or depend nonmonotonically on lead
time, a more general model than an autoregressive model is necessary. To develop an intuitive understand-
ing, it is desirable to explore the sensitivity of the weights to changes in the covariance matrix of the errors.
However, it is unlikely that much insight will come from directly perturbing specific elements of the covari-
ance matrix. For instance, the covariance matrix must always be positive definite, so perturbations applied
to matrix elements must be constrained to ensure that the full matrix remains positive definite. Also, per-
turbing elements of a covariance matrix implies changing the growth and correlation properties of the
errors. We would not want to perturb the covariance matrix in a way that generates kinks or other unusual
characteristics in the error growth or correlation properties of the errors. A more instructive approach is to
separate variance-correlation dependencies using the decomposition:
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R5DRD; (23)

where D is a diagonal matrix with positive diagonal elements d1; . . . ; dL equal to

ds5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðs; 1Þ

p
; (24)

and R is a correlation matrix. Any positive definite error covariance matrix can be decomposed in this form.
This decomposition allows us to perturb the error growth and correlation properties separately. Inverting
(11) to derive the weights yields

w5kD21R21D21j: (25)

In general, mean square error increases with lead time. Thus, we consider three different error growth func-
tions: logistic, linear, and constant. Also, the correlation between errors tends to decrease with the differ-
ence in lead times (Trenary et al., 2017). For simplicity, we assume that the error correlation depends only
on the difference in lead times. Thus, Rij5f ðji2jjÞ. This assumption implies that the correlation matrix has
the Toeplitz form:

R5

1 q1 q2 . . . qL21

q1 1 q1 . . . qL22

q2 q1 1 . . . qL23

� � � . .
.

�

qL21 qL22 qL23 . . . 1

0
BBBBBBBBB@

1
CCCCCCCCCA
: (26)

This matrix is uniquely specified by the parameters q1; . . . ;qL21. We consider three types of decay functions
for the correlation qs: constant, power law, and linear.

We emphasize that the above Toeplitz form is assumed merely for analytic simplicity and should not be
construed as a preferred parameterization of R. In practice, the eight-parameter model of Trenary et al.
(2017) yields a more accurate parameterization. Our focus in this paper is conceptual understanding. As will
become clear, the Toeplitz form leads to interesting insights into the weights of an optimal lagged
ensemble.

4.1. Constant Off-Diagonal Elements
First, consider the case in which the errors have the same correlation regardless of lead time (an admittedly
unrealistic example for a lagged ensemble). In this case, the correlation matrix has constant off-diagonal ele-
ments and hence takes the form:

R5

1 q q . . . q

q 1 q . . . q

q q 1 . . . q

� � � . .
.

�

q q q . . . 1

0
BBBBBBBBB@

1
CCCCCCCCCA
: (27)

This covariance matrix can be written equivalently as

R5ð12qÞI1qjjT ; (28)

where I is the identity matrix. The inverse of (28) is

R215ð12qÞ21 I2cjjT� �
; (29)

where c5q=ðLq1q21Þ. Substituting (29) into (25) yields

w5kð12qÞ21 D22j2c jT D21j
� �

D21j
� �

: (30)

Using (24), the weights can be expressed alternatively as
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wk /
1

MSEk
2

c
X

k

1ffiffiffiffiffiffiffiffiffiffiffi
MSEk
pffiffiffiffiffiffiffiffiffiffiffi

MSEk
p for R5ð27Þ: (31)

In the special case of uncorrelated errors, q 5 0, c 5 0, and wk / 1=MSEK ; that is, the weights are inversely
related to MSE, as might be anticipated intuitively (or derived in some weighting schemes, as in Johnson &
Swinbank, 2009). It proves convenient to define

xk5
1

dk
5

1ffiffiffiffiffiffiffiffiffiffiffi
MSEk
p : (32)

Then the solution (31) can be expressed equivalently as

wk5kð12qÞ21 x2
k 2Lc�x xk

� �
; (33)

where �x is the average of x1; . . . ; xL, hence 1=�x is the harmonic mean of the root-mean-square error. It is
straightforward to show that if MSEk is a monotonically increasing function of k, then the weights decrease
monotonically with k. However, the weights can become negative if xk < Lc�x ; i.e., the weights become neg-
ative if the correlation q is sufficiently large and the mean square errors have sufficient spread, as found in
the two-variable case in section 3.

4.2. Correlations Decay With Lead
Next we consider correlations that decay as a power law of the form:

qs5qs ) Rij5qji2jj; (34)

where jqj < 1. This correlation function is illustrated in Figure 1a for three different values of q. Each func-
tion completely specifies the correlation matrix. We then compute the weights from (25) for the case in
which mean square errors grow as a logistic function (Figures 1b and 1c), as a linear function (Figures 1d
and 1e), and as a constant function (Figures 1f and 1g; the parameter values for error growth are not impor-
tant). In the case of the logistic function (Figures 1b and 1c), the weights become negative for small lead
times, but do not develop a U-shape at the tail. For linear error growth, the weights are positive and
develop positive curvature at the tail, with the curvature increasing with increasing q (Figure 1e). Finally, for
constant mean square error, the weights show a very significant curvature at the tail (Figure 1g).

To understand the above results, we take advantage of the fact that the correlation matrix formed from (34)
has an analytic inverse (Dow, 2003), which is

R215
1

12q2

1 2q 0 . . . 0 0 0

2q 11q2 2q . . . 0 0 0

0 2q 11q2 . . . 0 0 0

� � � . .
.

� � �

0 0 0 . . . 11q2 2q 0

0 0 0 . . . 2q 11q2 2q

0 0 0 . . . 0 2q 1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: (35)

Substituting (35) into (25), and using (32), yields

wk5k

x1 x12qx2ð Þ k51

xk 2qxk211ð11q2Þxk2qxk11ð Þ 1 < k < L

xL 2qxL211xLð Þ k5L

:

8>><
>>: (36)

The interior weights (i.e., 1 < k < L) can be manipulated into the suggestive form:

wk / 12qð Þ2x2
k 2qxk r2x

� �
k ; (37)

where ðr2Þk5xk2122xk1xk11 is a finite difference approximation of the second derivative with respect to
lag. Substituting (32) gives
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wk /
ð12qÞ2

MSEk
2

qffiffiffiffiffiffiffiffiffiffiffi
MSEk
p r2 1ffiffiffiffiffiffiffiffiffi

MSE
p

� �
k

: (38)

This solution is a linear combination of 1=MSE and 1=
ffiffiffiffiffiffiffiffiffi
MSE
p

, as in (31), except that the last term in (38)
includes an extra factor that depends on the curvature of xk.

Building on the above results, we partition the full solution (36) as

w5wnon2gradient1wgradient; (39)

where

wk;gradient5qk

2x1 rxð Þ2 k51

2xk r2xð Þk 1 < k < L

xL rxð ÞL k5L

;

8>><
>>: (40)

where rxð Þk5xk2xk21 is a finite difference approximation to the first derivative, and

wk;non2gradient5ð12qÞk
x2

1 k51

x2
k 12qð Þ 1 < k < L

x2
L k5L

:

8>><
>>: (41)

A plot of these terms is shown in Figure 2. It can be seen that the negative weight is caused entirely by the
gradient term, while tail curvature is caused entirely by the nongradient term.
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Figure 1. Illustration of the cross-lead error covariance matrix and corresponding weights of an optimal lagged ensemble.
The covariance matrix is decomposed as (23), where the correlation matrix is of the Toeplitz form (26), with correlations
shown in (a), parameterized as (34) using the values q5ð0:8; 0:5; 0:1Þ (green, red, blue, respectively). The mean square
error (i.e., diagonal element of D) is parameterized as (b) a sigmoid, (d) linear, and (f) constant function of lead, and the
respective weights are shown in (c), (e), and (g). The color of the curve for the weights coincides with the color of the cor-
relation function in Figure 1a used to define the covariance matrix.
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Lastly, suppose the correlations decay linearly as

Rij512dji2jj; (42)

where d is a slope parameter. The matrix (42) has the analytic inverse:

R2152
1

2d

2fL21=fL 1 0 0 . . . 0 0 d2=fL

1 22 1 0 . . . 0 0 0

0 1 22 1 . . . 0 0 0

� � � � . .
.

� � �

0 0 0 0 . . . 1 22 1

d2=fL 0 0 0 . . . 0 1 2fL21=fL

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (43)

where fL522d1d2ðL21Þ (Dow, 2003). Substituting (43) into (25) yields

wk52
k

2d

x1ð2x1fL21=fL1x21xLd2=fLÞ k51

xkðxk2122xk1xk11Þ 1 < k < L

xLðx1d2=fL1xL212xLfL21=fLÞ k5L

:

8>><
>>: (44)

Again, this solution can be partitioned into the form (39) with
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Figure 2. Same as Figure 1, except that the weights are decomposed into (c, f, i) a gradient term and (d, g, j) a nongra-
dient term.
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wk;gradient5
k

2d

2x1 rxð Þ2 k51

2xk r2xð Þk 1 < k < L

xL rxð ÞL k5L

;

8>><
>>: (45)

wk;non2gradient52
kd
2fL
ðx11xLÞ

x1 k51

0 1 < k < L

xL k5L

:

8>><
>>: (46)

In this case, if the curvature term vanishes, then the weights in the interior vanish and all of the weight
would be placed at the end points. This tendency for all the weight to be placed at the end points is evident
in Figure 1g, especially for large q where the power law decay approximates a linear decay law.

5. Constant Mean Square Error

The above results show that the tendency toward a U-shape is most obvious when the mean square error is
nearly constant over the range of lags in question (i.e., when the gradient term is small). Let us therefore
focus on this particular case, which is tantamount to assuming D5aI, where a > 0. In this case, the covari-
ance matrix becomes

R5a2R; (47)

which implies that the covariance matrix itself, rather than just the correlation matrix, is Toeplitz. In this
case, we are effectively considering the linear combination:

�5w1�11w2�21 . . . 1wL�L; (48)

where the errors �1; . . . ; �L have equal variances. In this case, the weights depend entirely on the correlations
between the errors. Our goal is to develop an intuitive understanding of the optimal choice of weights.

First, we show that the optimal weights in (48) are symmetric about their midpoint. To show this, first note
that relation (11) becomes

Rw5k0j; (49)

where k05k=a2. This equation can be written in index notation as

Rik wk5k0; (50)

where we invoke the implicit rule that indices that appear twice are summed. Applying the transformations
i ! L2i11 and k ! L2k11 gives the equivalent set of equations:

RL2i11;L2k11wL2k115k0: (51)

Because the covariance matrix is Toeplitz (i.e., depend only on the difference in indices),

RL2i11;L2k115Rik : (52)

Substituting (52) into (51), and then differencing the resulting equation with (50), yields

Rik wk2wL2k11ð Þ50: (53)

Because R is positive definite, this system of equations is satisfied if and only if

wk5wL2k11 for k51; 2; . . . ; L; (54)

which proves that the optimal weights from a Toeplitz matrix are symmetric about their midpoint.

The above symmetry could have been anticipated by physical reasoning. For instance, it would be difficult
to explain why the first weight w1 could differ from the last weight wL. After all, each random variable in the
sum has equal variance, and the correlation of �1 with each of its neighbors are the same as those for �L, so
there is nothing in the properties of the random variables to distinguish the first random variable from the
last random variable. This symmetry immediately implies that the optimal weights from a Toeplitz
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covariance matrix must be either constant or exhibit a U-shape somewhere (which could be either concave
upward or downward). In particular, the weights cannot decay monotonically with lead.

When are the weights constant? To answer this question, suppose w / j. Substituting this into (49) reveals
that each row of R must sum to the same value. As can be seen from (26), the difference between the
sum of the first two rows yields the condition q15qL21; the difference between the sum of the second and
third rows of R yields the condition q25qL22. More generally, the difference between the k’th and ðk11Þ’th
rows is

qk5qL2k for w / j: (55)

This result shows that if the weights from a Toeplitz matrix are equal, then the correlations of the correlation
matrix are symmetric about their midpoint. It follows immediately that if the correlations decay with lag,
which is empirically true, then the optimal weights cannot be constant; i.e., the weights must exhibit a U-
shape somewhere.

5.1. Constant Off-Diagonal Elements
Consider the case in which the off-diagonal elements of the correlation matrix are constant, as in (27). This
matrix satisfies (55), hence it follows immediately that the optimal weights are constant:

wopt5
1
L

j for R5ð27Þ: (56)

This solution also could have been obtained by substituting (29) into (49). Note that this solution is valid
regardless of the value of q.

5.2. Correlations Decay as a Power Law
Next, consider the case in which the correlation matrix is of the form:

Rij5qji2jj: (57)

Because the correlations do not satisfy (55), the weights cannot be uniform. Condition (49) is equivalent to
the condition:

w5kR21j: (58)

Substituting (35) into (58), and choosing k to satisfy the constraint (4), yields

wi5
1

21ðL22Þð12qÞ

1 i51

12q 1 < i < L

1 i5L

:

8>><
>>: (59)

Because jqj < 1, the weights are largest at the end points i51; L, thus the weights form a U-shape. More-
over, the U-shape becomes more extreme as q! 1. These features are easily seen in Figure 1g.

5.3. Correlations Decay Linearly
Next, consider the case in which the correlations in the correlation matrix decay linearly, as in (42).
Substituting (43) into (58) yields

wopt5

1=2

0

�

0

1=2

0
BBBBBBBB@

1
CCCCCCCCA

for R5ð42Þ: (60)

Remarkably, this solution holds regardless of the slope coefficient d. This result shows that when the corre-
lations decay linearly, all of the weight is placed on the first and last lags. This feature also is easily seen in
Figure 1g.
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5.4. Condition for the Interior Weights to Vanish
To understand the above result, consider the question of when the interior weights vanish. Suppose all but
the first and last weights w1 and wL vanish. The system of equations (49) then become

w11qL21wL5k0; (61)

q1w11qL22wL5k0; (62)

q2w11qL23wL5k0; (63)

� (64)

By symmetry, w15wL , in which case the above equations yield the system of equations:

qk211qL2k5constant for k51; 2; . . . ; L21: (65)

It is easily verified that qk512bk solves this system of equations. Moreover, it can be shown that this is the
only nontrivial solution to the above linear inhomogeneous difference equation (Efthimiou, 2011). This
result shows that if the correlations are a linear function of lag, then the interior weights must vanish, as
found in (60), leaving only two nonzero weights at the end points.

The above results partly rationalize the solution (60). In particular, the above results show that if the correla-
tions decay linearly, then the interior weights vanish, leaving two forecasts at the end points for combining.
The fact that the two forecasts at the end points have the most extreme difference in lags means that the
resulting combination will have the smallest mean square error of any pair of forecasts, as implied by (22).
Finally, as discussed in section 3, the optimal combination of two forecasts with equal variances is to com-
bine them equally, i.e., to use the weights w15wL51=2.

5.5. Three-Member Lagged Ensemble
Many of the above results, plus other new features, can be illustrated using a three-member lagged ensem-
ble. The error of a weighted 3-member lagged ensemble is

�5w1�11w2�21w3�3; (66)

where �s is the forecast error at lead s. The assumption that the cross-lead error covariance matrix is Toeplitz
means that the error covariances depend only on the difference in lead times. Assuming the errors are unbi-
ased and have unit variance,

E½�1�2�5q1; E½�2�3�5q1; and E½�1�3�5q2: (67)

Thus, only two correlations enter the problem, q1 and q2. When q15q2, the error covariance matrix is of the
form (27), hence the weights are equal (see (56)). It is easy to see why the weights are equal in this case:
from symmetry considerations, there is nothing in the problem to distinguish the errors, hence the weights
are exchangeable. Moreover, the weights sum to one, hence they must each be equal to 1=L. In fact, this is
the only case in which the weights are equal to each other, because q15q2 is precisely equivalent to condi-
tion (55).

Next, recall that the optimal weights from a Toeplitz error covariance matrix satisfy (54), which in the pre-
sent example implies w1 5 w3. The fact that the weights are symmetric about their midpoint immediately
implies that the weights must be either constant, or U-shaped. As proven above, the weights are constant if
and only if q15q2. Therefore, it follows that the weights must be U-shaped if q1 6¼ q2; that is, if the correla-
tion between �1 and �3 differs from the other correlations. This condition ‘‘breaks the symmetry’’ and distin-
guishes the errors.

Next, recall that the weights sum to one. Since the weights are symmetric about their midpoint, let
w15w35w. Then the fact that the weights sum to one implies w25122w. Therefore, the error of the
weighted lagged ensemble (66) can be expressed equivalently as

�5w�11ð122wÞ�21w�35wð�11�322�2Þ1�2: (68)

The mean square error is therefore
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MSE5E½�2�5w2 var½�11�322�2�1112w cov½�11�322�2; �2�: (69)

The first two terms are positive, while the last term, involving the covariance, is negative (as will be shown
below). Were it not for the covariance term, the minimum MSE would be obtained by w 5 0. Evaluating the
MSE using (67) gives

MSE5w2 628q112q2ð Þ12w 2q122ð Þ11: (70)

The minimum of this quadratic equation gives the value of w that minimizes MSE. This value is

wopt5
12q1

324q11q2
: (71)

We consider the following special cases. First, the case of equal weights requires

q15q2 for wopt51=3: (72)

This recovers our previous results that equal weighting requires equal correlations, and that a U-shaped set
of weights must occur when q1 6¼ q2. Second, suppose the correlations decay as a power law (34); thus, q1

5/ and q25/2. Then, the optimal weight (71) can be simplified to

wopt5
1

32/
for qs5/s: (73)

Here the weights are equal for /50, but as / increases from 0, wopt increases, thereby producing (literally)
a U-shape in the weights. This example shows that the U-shape in the weights occurs for any power law
decay of the correlations. Third, suppose the correlations decay linearly as qs512bs. Then, the optimal
weight (71) can be simplified to

wopt5
1
2

for qs512bs; (74)

which recovers (60). In this case, all of the weight is placed on the end points and the interior weight van-
ishes. Remarkably, the weight is independent of the slope parameter b.

None of the above examples give an concave downward U-shape for the weights. A concave downward U
occurs when wopt < 1=3, which occurs when q1 < q2. In other words, the correlations would need to
increase with the difference in lead times in order to produce an inverted U-shape. Such an increase is rarely
observed empirically.

6. Conclusion

This paper examined the weights of an optimal weighted-average lagged ensemble over a range of ideal-
ized models for the forecast errors. If the forecast errors are uncorrelated, then the optimal weights are
inversely proportional to the mean square error, as might be expected intuitively. The goal of this paper
was to understand when the optimal weights deviate from this behavior; in particular, when the weights
contain negative values or depend nonmonotonically on lead time, as noted in previous studies (Lu et al.,
2007; Trenary et al., 2017). We show that both types of behavior can be reproduced in a broad range of sta-
tistical models for the errors, thereby demonstrating that they are not necessarily artifacts of sampling
errors.

An instructive approach is to assume that the correlation between forecast errors depends only on the lag
between the forecasts. This assumption leads to a Toeplitz correlation matrix, which enjoys special analytic
properties. Typically, the correlation between forecast errors decays with lead time. Accordingly, we con-
sider two decay laws, one based on a power law and one based on linearity. In both cases, the weights can
be written as the sum of two terms: a term that depends on gradients of error growth, and another term
that does not. The term associated with gradients in error growth causes negative weights when the error
growth is sufficiently strong and the errors are sufficiently correlated. The term that is not associated with
gradients of error growth can contribute a U-shape in the weights, in the sense that the weights eventually
increase with lag, contrary to intuition. To understand the latter behavior better, we examined the extreme
case in which the mean square error is constant over the range of lags in the ensemble, which leaves the
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correlation structure as the only detail that determines the weights. In this case, the U-shape follows imme-
diately from symmetry principles. That is, we prove that if the mean square error is constant over the range
of lags in the ensemble, and the correlation between errors decreases with the difference in leads, then the
weights must have a U-shape. Thus, such U-shaped weights are a ubiquitous phenomenon when the mean
square errors are approximately constant over the range of lead times in the lagged ensemble. If the corre-
lation decay also is exactly linear, then, remarkably, the weights vanish at intermediate lags, leaving all of
the weight to be concentrated on the first and last forecast in the lagged ensemble. These results appear to
clarify certain surprising and counter-intuitive aspects of the weights of optimal weighted-average lagged
ensembles seen in previous studies.

Appendix A: AR1 Model

In this appendix, we compute the cross-lead error covariance function of an AR1 process. Consider the AR1
model:

xt5/xt211wt; (A1)

where / is a parameter between 0 and 1 and wt is a white noise process with zero mean and variance r2
W .

Trenary et al. (2017) showed that the cross-lead error covariance matrix of this process is

Rs1 ;s2 5 11ds1 ;s2

� �
12/min ½s1;s2�
	 
 r2

W

12/2 ; (A2)

where dij denotes the Kronecker delta function. This covariance matrix has the form:

R5
r2

W

12/2

2ð12/Þ 12/ 12/ . . . 12/

12/ 2ð12/2Þ 12/2 . . . 12/2

12/ 12/2 2ð12/3Þ . . . 12/3

� � � . .
.

�

12/ 12/2 12/3 . . . 2ð12/LÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
: (A3)

Based on this covariance matrix, the ith row of (11) may be written as

X
j

12/min ½i;j�
	 


wj5k
12/2

r2
W

� �
2 12/i� �

wi: (A4)

Taking the difference between the ith and ði11Þ th rows, assuming i � L21, yieldsX
j

/min ½i11;j�2/min ½i;j�
	 


wj5 12/i11� �
wi112 12/i� �

wi

/i112/i� �XL

j5i11

wj5 12/i� �
wi112wið Þ1 /i2/i11� �

wi11

/i112/i� �
wi111

XL

j5i11

wj

 !
5 12/i� �

wi112wið Þ: (A5)

For positive weights, the left hand side of (A5) is negative (because j/j < 1), and therefore,

wi11 < wi: (A6)

That the weights are positive can be seen by writing (A5) for i5L21; L22; . . .. In each case, wi can be writ-
ten as a linear combination of weights at higher lags, wi11;wi12; . . ., with positive coefficients. Thus, wL215

bwL for some positive b, which proves that wL21 and wL have the same sign. Repeating this argument for i
5L22; L23; . . . proves that all weights must have the same sign. Moreover, the case of all negative weights
can be excluded because (A5) cannot be satisfied in this case, given that R has only positive elements.
Therefore, all the weights are positive, and inequality (A6) implies that the weights of an optimally weighted

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001128

DELSOLE ET AL. THE WEIGHTED-AVERAGE LAGGED ENSEMBLE 2751



lagged ensemble of an AR1 process decrease monotonically. Thus, the optimal weights of a lagged ensem-
ble for an AR1 process cannot be larger at the longest lead times relative to the weights at slightly shorter
lead times. This conclusion is consistent with the fact that the error covariances discussed in Trenary et al.
(2017) had structure that clearly differed from the pattern seen in (A3).
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